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It is shown that fractional diffusion equations arise very naturally as the limiting dynamic equa-
tions of all continuous time random walks with decoupled temporal and spatial memories and with
either temporal or spatial scale invariance (fractal walks), thus enlarging their stochastic foundations
hitherto restricted to a particular case of fractal walk [R. Hilfer and L. Anton, Phys. Rev. E 51,

R848 (1995)].
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Fractional diffusion equations have been the subject of
several recent papers where it has been found that they
provide a natural dynamic framework for the description
of anomalous diffusion phenomena, such as diffusion on
fractal structures [1] or Lévy flights [2]. Some efforts have
been made as well in order to give some stochastic justi-
fication both of anomalous diffusion [3] and of fractional
dynamic equations [4], in both cases under the frame-
work of continuous time random walks (CTRW). The
aim of this paper is to show that the relation of CTRW
with fractional dynamics is much deeper than previously
shown [4].

In [4] a relation was established between fractional dif-
fusion equations and fractal walks, according to which
fractional equations describe a CTRW with a very pre-
cise form in terms of H functions of the waiting time dis-
tribution ¢(t). Here it will be shown that we do not need
to restrict so much the form of ¢(t) in order to obtain in
the long-time limit a behavior described by a fractional
diffusion equation. Furthermore, we shall see that, quite
generally, fractional dynamics are to be considered as the
long-time limit of any CTRW with decoupled spatial and
temporal memories and that they are particularly well
suited for all CTRW lacking a characteristic measure of
length or time, hence the name fractal walks.

As reviewed in [5], the statistics of a CTRW present-
ing anomalous diffusive behavior ultimately relies on the
failure of the central limit theorem. This may be due to
three reasons: the CTRW is governed by a wide waiting
time distribution ¢(t) [wide in the sense that the distri-
bution has an infinite first moment, that is to say, ¢(¢) is
such that ¢(¢) ~t7177 as t = co with 0 <y < 1], by a
wide displacement per step distribution A(r) [or, equiva-
lently, having A(r) ~ r737% as r — oo with 0 < 8 < 2,
which is a distribution with an infinite second moment]
or having long-range correlations.

In the first two cases (either no characteristic time scale
or no characteristic length), no knowledge of the precise
functional form of ¢(t) or A(r) for intermediate times or
distances is needed in order to establish the limiting prob-
ability distribution of the resulting CTRW (the mathe-
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matical foundations of this are to be found in the Lévy
distributions (Ref. [6] Chap. VIII) as limit distributions
in a generalized central limit theorem). Therefore, these
cases provide the easiest generalization of the normal dif-
fusive random walk.

It is a well-known result of the stochastic theory of
CTRW?’s [7] that if ¢(r,t) is the probability distribution
of making a step of length r in the time interval from ¢ to
t + dt for a random particle starting at ¢ = 0 from r» = 0,
the probability p(r,t) that the particle is at r at time ¢
satisfies the following equation:

p(r,t) = Z/o p(r',T)p(r — 1t — 7)dr

+ (1 - /Otlb(T)dT) be0- (1)

As tangentially noted in [3], this result is formally
equivalent to a generalized master equation

%g = Z,/o K(r—r',t—7)p(r',7)dr (2)

when one takes, in Fourier-Laplace space,

i) = V)-8,

In our scheme, Egs. (2) and (3) will play a major role,
in contrast to [3], and they will lead us to more general
results.

Now, we restrict ourselves to CTRW’s with decoupled
temporal and spatial memories, so that one may write
P(r,t) = ¢(t)A(r), and where either the waiting time dis-
tribution ¢(t) or the displacement per step distribution
A(r) is wide in the sense exposed previously, namely, that
either the first or the second moment of the distribution
is infinite, respectively. This approach leads immediately,
as shown in [3], to the following (k,u) — (0,0) limiting
¥ (k,u) distributions in the Fourier-Laplace domain, re-
spectively:

3)

2
o
’(ﬁ(k,u)Nl—-Clu'Y— 7]{32, (4)
p(k,u) ~1 —7u — CokP, (5)
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where 0 < v < 1 and 0 < # < 2. By introducing these
results in Eq. (3) one finds the behavior for small (k,u)
of the generalized master equation’s kernel K (k,u) for
CTRW's lacking characteristic measures:

K(k,u)~ —”—Zul—W (6)
b 27_ b
K (k,u) ~ —%kﬂ. ' (7)

Now, if we are interested in dynamics showing anoma-
lous diffusive properties it may be shown that, in the
long-time limit, these anomalous properties arise exclu-
sively from the limiting behavior of the kernel K (r,t) at
large distances or long times. More specifically, if one
studies a diffusive phenomenon with strong memory ef-
fects (for nonlocal effects one would proceed similarly),
one may split the kernel into two different functions con-
taining the long-time behavior on the one hand and the
intermediate- and short-time behavior on the other hand:

K1 l',t N t T
K(r,t) = {Kir,t%, t ; T. (8)

Using this notation, the generalized master equation
(2) turns, in the limit £ > T, into

% S File = ¥)pls' )
+Z/O Ka(r —1',t — 7)p(x', 7)dr, 9)

where Fi(r) = fOT K, (r,7)dr. Equation (9) makes clear
that the kernel at short and intermediate times K (r,t) is
only responsible for a conventional diffusive motion with-
out memory, whereas all memory effects are accounted
for by the long-time kernel K,(r,t).

Since we are interested in diffusion features largely de-
parting from conventional diffusion properties, one may
assume that the first summand in (9) can be neglected
in front of the second summand and we are finally led to
the conclusion that strongly anomalous diffusion is de-
scribed, in the long-time (or long-distance) limit, only
by the limiting behavior of the generalized master equa-
tion’s kernel. However, these limiting kernels are already
known [(6) and (7)] for the stochastic movements that
we are considering, and we arrive then at the following
dynamic equations in Fourier-Laplace space:

2
up(l,w) — plk,t = 0) = - k*u' p(l,u),  (10)
upl,u) = plic,t = 0) = = 2248 p(k,w). (1)

When inverting the transforms in order to recover the
(r,t) picture, one finds the following unusual inversions:

L {u "}, FI {kﬁp} , (12)

which have been seen in [8] to correspond to the
Riemann-Liouville and the Riesz fractional derivatives,
respectively. Using these mathematical tools we can now
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invert Egs. (10) and (11) to get
0p o2 _,0'"7p

ot 20, ot (13)
3,0 Cg

E_2ys

ot 21 . (14)

where 8177 /0t'™7 stands for the 1 — v order temporal
Riemann-Liouville fractional derivative and V? is the
order three-dimensional spatial Riesz fractional deriva-
tive (for an integral representation of them see the Ap-
pendix). Assuming a sufficiently good behavior of the
probability density p (Ref. [8], Sec. 2.7), one can finally
recast these two fractional equations in a more suggestive
form:

d"p 2

—a—t*; —ng Py (15)
op

—= =D,VPp.
ot 1VPp (16)

Thus, we have shown that fractional dynamic equa-
tions describe not only a particular case of CTRW, with
a very definite waiting time distribution ¢(t) or displace-
ment per step distribution A(r) as observed in [4], but
provide a limiting macroscopic dynamic description for
all CTRW’s with decoupled temporal and spatial mem-
ories and without characteristic measures of either time
or distance (fractal walks). Fractional diffusion equa-
tions must thus be viewed not as exotic and pathologic
dynamics but as a general limiting description of all scale
invariant diffusion processes.
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APPENDIX: FRACTIONAL DERIVATIVES

Here we shall briefly define, by means of their integral
representation, the fractional derivatives that have been
brought up in the text. For a more thorough explanation
of their motivations and implications refer to [8] and ref-
erences therein.

1. Riemmann-Liouville fractional derivative

This is historically the first sound definition of a frac-
tional derivative of just one variable, it arises naturally
from the formula for n-fold integration. Its integral rep-
resentation is

f(r)dr

o> f 1 ar [t
Bte T T(n—a)dt / (Ersr=ey (A1)
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where 7 is the smallest integer larger than o (n = [a]+1).

2. Riesz fractional derivative

This is a definition for fractional derivatives in higher
dimensional spaces R™. Its motivation is the generaliza-
tion of the Laplacian V2 to an arbitrary order “Lapla-
cian” V8:

1
Vi =) [ 31" (,i) %y—)dy,

R™ k=0
(A2)
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where d,, ;(3) is a constant depending on the dimension
of the space n, the integer I/, and the real number 8 in
such a way that definition (A2) is independent of ! as
long as I > (.

The cumbersome aspect of these definitions disappears
when one computes their Laplace or Fourier integral
transforms, respectively. When performed, these trans-
formations yield very elegant and natural definitions,
namely,

o~ ~
&L w = Flw),

=u*f
VA (k) = kP f(k).
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